Asymmetric Synthesis of (S)-Dimethyl -4, 4'-dimethoxy-5, 6, 5', 6'-dimethenedioxybiphenyl-2, 2'-dicarboxylate

Sen Xiang CHENG ${ }^{1,2}$, Li Min WANG ${ }^{2}$, Jun Biao CHANG ${ }^{2}$, Ling Bo QU ${ }^{1}$, Rong Feng CHEN ${ }^{2, *}$ Jing Xi XIE ${ }^{2}$
${ }^{1}$ Department of Chemistry, Zhengzhou University, Zhengzhou 450052
${ }^{2}$ Henan Research Center, Henan Academy of Sciences, Zhengzhou 450002

Abstract

S)-Dimethyl-4, 4'-dimethoxy-5, 6, 5', 6'-dimethenedioxy-biphenyl-2, 2'-dicarbonylate was synthesized in reasonable yield through a series of reactions, including chiral oxazolinemediated asymmetric Ullmann coupling, from methyl 2-bromo-5-methoxy-3, 4-methenedioxybenzoate.

Keywords: Biphenyl, Schisandrin C, asymmetric Ullmann coupling.

Schizandra chinesis (wuweizi) has long been used in Chinese herbal medicine. Schisandrin C, as a constituent of Schizandra chinesis, shows various pharmacological activities ${ }^{1}$. The similar compound, dimethyl-4, 4'-dimethoxy-5, 6, 5', 6'-dimethenedi-oxy-biphenyl-2, 2^{\prime}-dicarboxylate (α-DDB), discovered by $\mathrm{Xie}^{2,3}$ et al. in the investingation of schisandrin C, and some derivatives have also exhibited anti-HIV and anti-HBV activity ${ }^{4}$. Further study of this kind of biphenyls has attracted considerable attention.

It is well known that $2,2^{\prime}, 6,6^{\prime}$-tetra-substituents of biaryl make it difficult to rotate about aryl-aryl bond, which could result in two axially chiral isomers with R/S configuration. Furthermore, R and S isomers showed different biological activities ${ }^{5}$. To date, there is scarce report on the preparation of chiral α-DDB besides classical resolution of α-DDB's racemic isomers ${ }^{6}$. Therefore, it is necessary to find an efficient stereoselective method of synthesizing DDB. This paper described that S-DDB was prepared in reasonable yield.

[^0]
Scheme 1

Reagent: (a) 1. KOH , in $95 \% \mathrm{EtOH}$; 2. Conc. HCl ; (b) SOCl_{2}, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c). (S)-2-aminopropanol, $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$; (e) t-ButOK, THF and t-ButOH; (f) activated copper dust in DMF; (g) 1. TFA, water. 2. $\mathrm{Ac}_{2} \mathrm{O}$, DMAP; (h) NaOMe , in MeOH .
(S)-DDB was synthesized as Scheme1 from methyl 2-bromo-5-methoxy-3, 4-methenedioxybenzoate $\mathbf{1}$ via a series of reactions including the key chiral oxazolinemediated asymmetric Ullmann coupling reaction ${ }^{7}$.
$\mathbf{1}$ was hydrolyzed to afford $\mathbf{2}$, and then $\mathbf{2}$ was converted to the carboxylic chloride $\mathbf{3}$ by the reaction with SOCl_{2}. 3 was mixed with (S)-2-amino propanol and triethylamine to afford 4. Reaction of the amide 4 with SOCl_{2} gave 5 , and 5 was heated in the presence of potassium t-butoxide in the mixed solvent of THF and t-butanol to give (S)-oxazoline phenyl bromide 6.

The asymmetric Ullmann coupling reaction of $\mathbf{6}$ in the presence of activated copper powder gave the mixture of bis-oxazoline biphenyl 7S and 7R. HPLC and ${ }^{13} \mathrm{C}$ NMR analysis indicated that the diastereoisomeric ratio of S and R was 81:19. Recrystallization in the mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and light petroleum afforded the optical pure 7S.

S-Configuration of the biphenyl subunit of 7S was confirmed by Cotton effect in CD spectrum. The CD spectroscopy of 7S exhibited negative Cotton effect at 305 nm , 260 nm and positive Cotton effect at 293 nm in methanol. Therefore, the configuration of compound 7S was assigned as S^{8}. In addition, the configuration was also confirmed by the specific rotation of the related compound S-DDB.

As a pair of diastereoisomers, 7R and 7S could be separated on HPLC by general C 18 column. The retention time of 7S and 7R were 25.7 min and 27.6 min , respectively, at given condition. In addition, ${ }^{13} \mathrm{CNMR}$ spectrum of 7 S showed twelve single-peaks, but the mixture of 7S with minor 7R exhibited twelve pairs of double-peaks. The peak intensity ratio of double-peaks was approximately consistent with the ratio of S and R measured by HPLC.

7S was hydrolyzed and reacted with acetic anhydride to gave diamide $\mathbf{8}$, and the crude of $\mathbf{8}$ was alcoholysized by methanol in the presence of sodium methoxide to afford S -DDB. The CD spectroscopy showed negative Cotton effect at 259 nm . Therefore, the configuration of $\mathbf{8}$ was assigned as S^{9}.

Asymmetric Synthesis of (S)-Dimethyl -4, 4-dimethoxy-5, 6, 5', 6'-dimethenedioxybiphenyl-2, 2-dicarboxylate

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker-300 MHz. IR spectra, ESI-MS and circular dichroism spectroscopy were carried out on a Shimadazuir-408, Bruke Esquire-3000 and Jasco J-20, respectively. HPLC were on Shimadzu LC-10A.

Compound 4: Methyl 2-bromo-5-methoxy-3,4-methenedioxybenzoate $\mathbf{1}(6 \mathrm{~g}, 20.7$ mmol) was added to water (60 mL) with $\mathrm{KOH}(4.5 \mathrm{~g}, 69 \mathrm{mmol})$. The mixture was refluxed for 7 h , and then acidified with con. HCl till $\mathrm{pH}=3.0$. Filtration and dryness of the mixture gave corresponding benzoic acid $2(5.48 \mathrm{~g}, 96 \%) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}), \mathrm{SOCl}_{2}$ ($2.8 \mathrm{~mL}, 39 \mathrm{mmol}$) and 2 drops DMF were added to compound $2(5.20 \mathrm{~g}, 18.9 \mathrm{mmol}$). After the mixture was stirred for 12 h , the solution was evaporated under reduced pressure. Toluene (10 mL) was added to the residue. The solvent was evaporated again to afford crude 3 . The solution of $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added to the mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, (S)-2-amino propanol($1.56 \mathrm{~g}, 20.8 \mathrm{mmol}$) and triethyl- amine $(5 \mathrm{~mL})$ at cooling in ice bath. This mixture was stirred for 12 h at r.t. under Ar, and poured into 100 mL water. The organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Recrystallization from ethanol gave $4(5.27 \mathrm{~g})$ in 84% yield. mp. $175-176{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) 6.97(s, $\left.1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.28(\mathrm{~m}, 1 \mathrm{H}$, NCH), 3.92(s, 3H, OCH ${ }_{3}$), 3.83-3.78(dd, 1H, J=3.3, $10.8 \mathrm{~Hz}, \mathrm{OCH}$), 3.69-3.64(dd, 1H, $\mathrm{J}=5.4,10.8 \mathrm{~Hz}, \mathrm{OCH}), 1.31\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9, \mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3278.8(\mathrm{O}-\mathrm{H}), 1643.2$, 1624.0 (CONH). ESI-MS $(\mathrm{m} / \mathrm{z}) 332$ [M+H] ${ }^{+}$.

Compound 6: $\mathrm{SOCl}_{2}(2.40 \mathrm{~mL}, 33 \mathrm{mmol})$ was added to the solution of $\mathbf{4}(5 \mathrm{~g}, 15$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The mixture was stirred at r.t. overnight and poured into 120 mL ice water. The aqueous $10 \% \mathrm{NaOH}$ was added till pH 7 . The organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo to give 5 . To 5 were added THF (75 mL), potassium t-butoxide ($3.36 \mathrm{~g}, 30 \mathrm{mmol}$) in t-butanol(75 mL). The mixture was stirred at reflux overnight. The solvent was removed, 30 mL water was added and then was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by silica gel chromatography to yield (S)-oxazoline phenyl bromide 6 in 95\% yield (4.5 g). mp.83-84 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}=-36.1\left(\mathrm{c} 3.1, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) 7.06(s, $\left.1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right)$, $6.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.54-4.48\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.8,9 \mathrm{~Hz}, \mathrm{OCH}^{\mathrm{a}}\right), 4.43-4.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, $3.97\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{OCH}^{\mathrm{b}}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.38\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. ESI-MS $(\mathrm{m} / \mathrm{z}) 314[\mathrm{M}+\mathrm{H}]^{+}, 336[\mathrm{M}+\mathrm{Na}]^{+}$.

Compound 7S: To the anhydrous DMF(10 mL) was added (S)-oxazoline phenyl bromide $\mathbf{6}(1.5 \mathrm{~g}, 4.77 \mathrm{mmol})$, activated copper powder($1.5 \mathrm{~g}, 23.5 \mathrm{mmol})$. The mixture was heated under Ar at $145^{\circ} \mathrm{C}$ for 24 h , and the solvent was removed in vacuo. To the residue was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with aqueous ammonia($5 \%, 2 \times 15 \mathrm{~mL}$). The organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified through silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\left.\mathrm{EtOAC}: T H F=5: 2: 1\right)$ to give the mixture of 7S with minor 7R 1.04 g (93\%) in 62\%de (HPLC, C18-column, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=55 / 45,1 \mathrm{~mL} / \mathrm{min}, 7 \mathrm{~S}: \mathrm{Rt}=25.7 \mathrm{~min}$, 7 R : $\mathrm{Rt}=27.6 \mathrm{~min}$). Recrystallization from the mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and light petroleum afforded 7 S in $99 \% \mathrm{de}(0.513 \mathrm{~g}, 46 \%)$. mp. 162-163 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}-107(\mathrm{c} 0.036, \mathrm{EtOH}),{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 7.23(s,
$2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.99\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.95\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.25-4.15(\mathrm{~m}$, 4 H , oxazoline OCH_{2}), 3.95(s, 6H, OCH_{3}), 3.77-3.71(m, 2H, NCH), $1.20(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=3.2 \mathrm{~Hz}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 163, 147, 142, 136, 121, 111, 109, 101, 73, 61, 56, 21; ESI-MS $(\mathrm{m} / \mathrm{z}) 469[\mathrm{M}+\mathrm{H}]^{+}$. The CD spectroscopy showed the negative Cotton effect at $305 \mathrm{~nm}, 260 \mathrm{~nm}$ and positive Cotton effect at 293 nm in methanol.
(S)-DDB: To the solution of trifluoroacetic acid ($0.20 \mathrm{~mL}, 2.50 \mathrm{mmol}$) in THF (15 $\mathrm{mL})$ and water $(0.5 \mathrm{~mL})$ was added compound $7 \mathrm{~S}(0.40 \mathrm{~g}, 0.85 \mathrm{mmol})$. The mixture was stirred at r.t. overnight, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo. To the residue was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, pyridine $(2 \mathrm{~mL})$, acetic anhydride $(0.5 \mathrm{~mL}$, 5.2 $\mathrm{mmol})$ and 4 -dimethylaminopyridine $(5 \mathrm{mg}, 0.04 \mathrm{mmol})$. The mixture was stirred at r.t. overnight. To the mixture was added methanol (5 mL), stirred at r.t. for 5 h , washed with $4 \% \mathrm{HCl}(3 \times 25 \mathrm{~mL})$ and water (25 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to obtain crude 8. To the crude $\mathbf{8}$ was added methanol (10 mL), $\operatorname{THF}(10 \mathrm{~mL})$ and $\mathrm{NaOMe}(0.25 \mathrm{~g}, 4.5 \mathrm{mmol})$, and stirred at r.t. overnight. The solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with water. After the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo, the residue was purified by silica gel column chromatography to afford (S)-DDB (0.26 g , 73%) in 93\%ee (Chiral HPLC analysis: chiralcel OD column, ethanol/hexane=15/85, 0.5 $\mathrm{mL} / \mathrm{min}$). The CD spectroscopy of (S)-DDB exhibited negative Cotton effect at 259 nm . $[\alpha]_{\mathrm{D}}{ }^{25}=-76.32\left(\mathrm{c} 0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{mp} .140-142{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$ 7.42 (s, 2H, 2Ar-H), 6.06(s, 4H, $2 \mathrm{CH}_{2}$), 4.02(s, $6 \mathrm{H}, 2 \mathrm{Ar}-\mathrm{OCH}_{3}$), $3.78\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{COOCH}_{3}\right)$. ESI-MS(m / z) $419[\mathrm{M}+\mathrm{H}]^{+}$.

References

1. (a) Y. Kiso, M. Tohkin, H, Hikino, et al., Planta Med., 1985, 51(4), 331. (b) J. Slanina, H. Paulova, E. Taborska, Pharmacological and Pharmaceutical Lett., 1997, 7, 53. (c) K. Yasukawa, Y. Ikeya, H. Mitsuhashi, et al., Oncology, 1992, 49(1), 68.
2. J. X. Xie, J. Zhou, C. Z. Zhang, et al., Scientia Sinica, Series B, 1983, 26(12), 1291.
3. J. X. Xie, J. Zhou, C. Z. Zhang, Acta Pharmaceutica Sinica (in Chinese) 1982, 17(1) 23.
4. L. Xie, J. X. Xie, Y. Kashiwada, et al., J. M. Chem., 1995, 38, 3003.
5. Institute of Materia Medica, Chinese Academy of Medical science, Modern Research of Chinese Herb, Vol. 1, 1995, p385.
6. F. W. Yeng, J. Y. Chiu, C. L. Wang, US Pat. 5,504,221, 1997.
7. Andrew P. Degnan, A. I. Meyers. J. Am. Chem. Soc., 1999, 121, 2762.
8. D. C. Dai, O. R. Martin, J. Org. Chem., 1998, 63, 7628.
9. T. kyta, T. Yoshiya, M. Ashida, et al., J. Chem. Soc. Perkin Trans. 1, 1983, 1765.

Received 23 December, 2003

[^0]: * E-mail: chsxchem@hotmail.com

